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Taxonomy of Generative Models

What we’ve learned:
 Markov Models, HMMs, LDSs,

Deep Generative Models
RNNs

What we’ve learned:
e PPCA

/’VAE

Autoregressive
models
(e.g., PixelCNN)

FI?n“c’)-cli):Issed @ variable
(e.g., RealNVP) models

Energy-based
models

Implicit models
(e.g., GANSs)

What we study now:
Transformers

Prescribed models
(e.g., VAESs)



Autoregressive Models

* Many kinds of models
* Markov Chains
* Hidden Markov Models
 Markov Random Fields
* Linear Dynamical Systems
* Recurrent Neural Networks
* Transformers

 Last lecture
* Model: Introduced the vanilla RNN architecture
* Inference: Unfolding
* Training: Backpropagation Through Time
e Variants of RNNs: LSTMs, GRUs
* Seq2Seq: Machine Translation, Image Captioning
* Attention Mechanism: Soft and Hard Attention

.
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Last Lecture: Why RNNs fall short?

* Hard to capture long-term dependencies
* Require modification to architectures

* Hard to train due to vanishing and exploding Gradients
* Hard to process in parallel due to sequential nature

* Transformers: A non-recurrent solution that solely relies on “attention”:

* No reliance on recurrence:

* Transformers capture dependencies across all input tokens (words) simultaneously,
processing the entire sequence at once.

* This allows for parallel computation, unlike RNNs that rely on sequential processing.
e Captures global dependencies:

* The attention mechanism enables modeling of long-range dependencies without the
vanishing gradient problem.



Lc

1990s

2014

2017

2018

2018-2020

2021-2022

2024

Recurrent Neural Networks

RNNs, GRUs, LSTMs

Simple attention mechanisms

Beginning of transformers

Attention is all you need

Explosion of transformers in NLP

BERT, GPT-3

Explosion into other fields

Explosion into other fields: ViTs, Alphafold-2.

Start of Generative Era

Codex, Decision Transformers, GPT-X, DALL-E

Present Day

Huge models, more applications: Chat-GPT, GPT-4, Gemini,
Llama and open-source LLMs, Whisper, Robotics Transformer,
Stable Diffusion, Sora, and so much more...!

Future (?!)




Recall the Translate and Align Model in RNNs

* Decoder: context vector c¢; is computed as a weighted sum
of the hidden states z;: e T

T V-1 ! YVt
Cy = Zx Z = exp(etj) €r; = a(s z)
t — ' T. tj — t—1,4j

£ ¥ics exp(en)

Context vector Weights of hidden states Alignment model

* Here:

* a is called the Alignment model

* Computes how well the inputs around position j and the output at
position t match

* Typically chosen to be a feedforward neural network
* V¢j is the probability that the target word y; is aligned to, or
translated from, a source word X;.

* ¢ is the expectation of the hidden state w.r.t. the distribution ;. xoxl xz xT



From RNNs to Transformers N

* Let’s keep what is good from Align & Translate: |

* Use encoder to learn latent representation of source
sentence

* Use decoder to learn latent representation of target
sentence

DECODER

 Align the latent representations of the source/target I
sentences and form global contexts

* Use decoder to map contexts to target sentences Contexts €1, €2y ey CT

1

* Let’s recap our setting: Machine Translation 4

 We are given a sentence, a sequence of tokens
(words) as input, represented by x = (x4, ..., X7).
We want to build an architecture that takes a

ENCODER

sentence as input and produces a translated target i

sentence y = (y4, ..., y7) as output.
Input X1, X2, ey XT



Transformer

* Let’s keep what is good from Align & Translate:

* Use encoder to learn latent representation of source
sentence

* Use decoder to learn latent representation of target
sentence

 Align the latent representations of the source/target
sentences and form global contexts

* Use decoder to map contexts to target sentences

* Let’s recap our setting: Machine Translation

* We are given a sentence, a sequence of tokens
(words) as input, represented by x = (x4, ..., X7).
We want to build an architecture that takes a
sentence as input and produces a translated target

sentence y = (y4, ..., y7) as output.
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Output

Word to Word Embedding P

[ Softmax )

* First, just like any RNN language tasks, we
convert our one-hot vector into embeddings

|l  Linear )
h

( )
) | Add & Norm Je~
through a word embedding e
Forward
(I
. I l orm J=~
* Given a sentence, a sequence of one-hot (o) | || e
vectors, X = (X4, ..., %7), %, € {0, 1}V Fomard L J |
1 —
N | e | Add & Norm J~
. . orm
* We obtain the embedding for each word by = asked
x _ E 56: Attention Attention
t = LXt T 1 7
: d XN ; . . — J \ .
e Again E € R is the embedding matrix, and Posttionl I ( ositiondl
can be pre-trained or learned end-to-end Encoding @—m - _t = Encoding
Embé)dding Embegding
* In the context of transformers, x; is also known mpTutS Out!auts

as a token. (shifted right)

Figure 1: The Transformer - model architecture.



Output
What about the order? Pt
[ Softmax )
* In RNNSs, the recurrence plays a role in telling us

|  Linear |
h

the order of the words in a sentence. But now, we =0
won’t have that, since we lose the recurrence Ex

Forward

—

e Simple example:

* {l, do, not, like, apples, and, you, like, oranges} and 1 AddFi':'frm ) [A“Z;Eﬁg‘;‘:: 3
{you, like, apples, and, I, do, not, like, oranges} Forward 57 Nix

* Since they contain the same words, they are actually ’ — (A &m
the same set! T | ([

* Need method to encode position of an entity that S~ o

* Outputs a unique encoding for each position Posmomg_@ i ;j)smonal

* Distance between any two positions should be Encoding % Encoding
consistent across sentences with different lengths Ermending Eboning

* Generalize to longer sentences without any efforts ] [

* Its values should be bounded s g ot

Figure 1: The Transformer - model architecture.



Positional Encoding: Why vectors instead of indexes?

. . . Index
. P05|t|onql encodlng glescrlbes Sequence  of olen Positional Encoding Makrix
the location or position of an
entity in a sequence | _, 0 _, P Pos Pod
. . :
Eagh position is ass!gned a a1 P o P
unique representation
a — 2 — P22 P21 Pog
Robot —» 3 —  Pao P31 P3d

Positional Encoding Matrix for the sequence ‘I am a robot’

* Why not just use the index?

* For long sequences, the indices can grow large in magnitude.

* If you normalize the index value to lie between 0 and 1, it can create problems for variable
length sequences as they would be normalized differently



Positional Encoding: Intuition 0: 0000  8:
: : 1: 001 9.
* Suppose you want to represent a number in binary . 010 10
* The lowest bit alternates with every number 3 011 11
* The second-lowest bit alternates every two numbers, 4. 100 19 -
and and and higher bits continue this pattern. . 101 13 -
: : 6 : 110 14 :
e But using binary values would be a waste of space
7 111 15 :
* Instead, we can use their continuous counterparts: " sin(wy.t) ]
sinusoidal functions. cos(wr. t)
* By decreasing their frequencies, we replicate the Si“((“’f*'?)
behavior of binary bits: o= |

* Higher frequencies alternate more rapidly, similar to the
lower bits in binary (e.g., red bits).

* Lower frequencies alternate more slowly, similar to the sin(wg/s- t)
higher bits in binary (e.g., bits). | cos(wg/2-1) | 4o

R = =, =, O O O O
R =~ O O = = O O
R O, O O = O



Positional Encoding

e To convey the ordering information , we use Positional Embeddings P € R*XT

* In “Attention is All you Need”, authors suggested

100

Py ; = sin( 2_l.) if i is even o
100004
k o vm
P, ; = cos ) ifiis odd /Z""?"Z'fi?f L 1 e
k,l ( Zl)
1 O 0 O (‘.)7 The positional encoding matrix for n=10,000, d=512, sequence length=100

e letx = [xq,...,x7] € R%*Tpe the (row) matrix of tokens concatenated together

* Positional Embedding gets added to the input directly to the set of tokens:
x(® = x + p e RXT

* We use superscript (0) to denote the input, zero-th layer



Encoder Block

* Just like in the Attend & Align model, we have an
encoder that turns input embeddings into hidden
embeddings

* The main components of an Encoder Block is
* Multi-Head Attention
* LayerNorms
* Feedforward Neural Networks
e Skip Connections

e Let’s break down the Multi-Head Attention!
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Self-Attention

* Focuses on important parts of the input by weighing
the relevance of each token to the others.

* What does “it” in the sentence “The animal didn't cross  Layer:[0 v]Atention: [input - input |
the street because it was too tired.” refer to? .F A o

* |s it referring to the street or to the animal? an;n:ja' - animal_
idn . didn_

t

—

* Self-attention allows each token to attend to every

other token in the sequence, helping the model i
capture context and relationships between words. oL ; et
* When processing "it", the model uses attention to it - it
understand that "it" refers to "animal.” s v
tire tire
* In RNNs, a hidden state carries context from < 4

previous tokens, but attention mechanisms allow
direct access to all tokens, without relying on a
sequential flow.



Self-Attention

* Given the input embeddings x = [x4, ..., X7], we generate three matrices:
* Query matrix Q e Key matrix K e Value matrix V

* Input embeddings are transformed into these matrices by multiplying the
embeddings by three weight matrices W<, WX, WV that we learn during the
training process. we

* Analogy for Query, Key, and Value: Library System . _

* Imagine you’re looking for information on a topic (query)

e Each book has a summary (key) to help you identify if it
contains relevant information.

* Once you find a match, you access the book to get the X _

detailed information (value) you need.

* |In Attention, we do a "soft match" across multiple
books, combining relevant information from each book

in proportion to how relevant it is (e.g., book 1 is most

relevant, then book 2, etc).
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Date: Oct. 10, 2013

From: PRWeb Newswire

Publisher: Vocus PRW Holdings LLC
Document Type: Article

Length: 504 words

Full Text:
Seattle, Wa (PRWEB) October 10, 2013

Violin Master Pro is a new music program that provides peaple with a series of basic violin lessons for beginners, simple exercises,
and step-by-step instructions on how to become a professional violinist. This program is designed by Eric Lewis, a world renowned
violinist who has over 40 years of experience in teaching people how to master their violin easily. Since Eric Lewis released the
"Violin Master Pro" program. a lot of clients have used it for learnina how to play solos. senatas. and concertos effortlessly. As a




Self-Attention

e Calculate the attention score by taking the dot product of Q and K.

* Divide the scores by /d;, where d;, is the dimension of the hidden embedding,
to ensure the variance of the dot product does not grow with dy,, leading to
unstable attention mechanism.

* Apply the softmax function to the scaled scores, turning them into probabilities.

* Multiply softmax scores by V' to obtain the final attention output. )
* The self-attention, thus, is defined as: —
Q T SoftMax
i
Mask (opt.)
x 1
SA(Q,K,V) = softmax( ) Scale
Vdy, 1
MatMul
* The term “self” comes from the fact that Q, K, VV are all derived g f< v

from the same input sequence x = [x4, ..., X7]



Multi-Head Self-Attention (MSA)

* Multi-head Self Attention (MSA) extends Self-Attention by introducing multiple
independent attention heads, each focusing on different types of relationships.

action of

“The animal didn't cross the because it was too

”

e Each head is considered as one copy of a single Self Attention, with additional weight

matrices Wl-Q, WiK, WiV for each head, indexed by i:

MSA(Q, K, V) = [SA(Qy, Ky, Vo), ..., SA(Qy, Ki, Vi)W,
Qi — Vl/lQQ Ki — WiKK Vi = WiVV A

)

Linear

Concat

Scaled Dot-Product J& h
Attention ~

* Where W, € R(Pdv)Xd js the weighting matrix between all fl

~

ul nl

attention heads, and W%, WX, W are weight matrices of Lnear

Linear Linear

g
query, key value foreachheadi =1, ..., h

* Multi-Head Cross Attention (MCA) applies the same mechanism in !

i

K Q

the context where the queries, keys, and values might come from different sources.



Residual Connection & Layer Normalization

* Residual Connection: combines the input with
the output of a sub-layer (either self-attention
or feed forward).

* It allows the gradients to flow through the network
directly, bypassing non-linear transformations.

Output = LN (x + SubLayer(x))

* LayerNorm normalizes the inputs across the
features instead of the batch dimension.

* This ensures consistent scaling across layers, leading
to more stable training.
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Encoder Block Summarized

* Putting everything together mathematically, the
encoder block can be described by

W = LN(MSA(xD, x(7D 5 (=1 4 x(-1))
x® = LN(FFN(2®) + )

where FFN is a feed forward neural network and
LN denotes Layer Norm

* Note that the input and output dimension of
the encoder block is the same - RT*¢

* We can stack encoder blocks together to make
it deeper

* The output is like the input a collection of
tokens, but in context with other tokens
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Decoder Block

* Now, we are going to switch gears into the decoder blocks
* At a high level,

e During inference, the decoder will take in a <BOS> (beginning of sentence) token as input,
and recursively predict the next word until the <EOS> (end of sentence) token is predicted

* Just like our previous methods for machine translation, the decoder should take in context
from the encoder to predict what the next token should be




Decoder Block: Attention Layers

°|Int
Mu

°Int

he Encoder, each block consists of only one
ti-Head Self-Attention layer.

ne Decoder, each block consists two layers:

* The first one is a Masked Multi-Head Self-Attention with
tokens from input (ignore "masked” part for now)

» Allows each token to attend to previous ones in the sequence.

W = LN(MaskedMSA(y (=, y(i=1) 5 (=1)) 4 4, (-1))

* The Second one is a Multi-Head Cross Attention with

key and values matrices from the output of the encoder,

and query matrix from the previous Multi-Head Self-
Attention

* Allows the decoder to focus on relevant part of encoded input

j;(l) — LN(MCA(y(l 1) (N)) + )’;(l 1))

« xN) is the output of the encoder (composed of N
encoder layers)
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Decoder Block: Summarized

 Summarizing a forward pass of the Decoder Block,
along with Layer Norms and Feedforward
Networks like the Encoder:

9 = LN(MaskedMSA(y (=D, y(i=1) (=1} 4 5, (1=1)
5;(1) — LN(MCA(y(l_l),x(N),x(N)) + 5;(1—1))
y®W = LN(FFN(3) + 7))
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Decoder Block: Masked?

 Summarizing a forward pass of the Decoder Block,
along with Layer Norms and Feedforward
Networks like the Encoder:

9 = LN(MaskedMSA(y (=D, y(i=1) (=1} 4 5, (1=1)
5;(1) — LN(MCA(y(l_l),x(N),x(N)) + 5;(1—1))
y®W = LN(FFN(3) + 7))

e But, what does the “Masked” in Masked Multi-
Head Attention mean?
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Decoder Block: Masked MHA

 Just liked Multi-Head Attention, MaskedMHA
calculates attention scores using a scaled dot-
product of Query and Key vectors, and normalizes
these scores with a softmax function to obtain

attention weights.

* During training, MMHA applies masks on the
attention matrices. This is important to preserve
the autoregressive property, where each
token is predicted based on the preceding tokens

only.

MaskedSA = softmax(

Q T

B . gg )

Vi

M is a mask that applies — to all
future positions so they don’t
contribute to the softmax output.
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Training

* Training the Transformer shares similar intuition with
other Seq2Seq models. The transformer uses masked
self-attention in the decoder, which doesn’t depend on
future words in the sequence.

* The objective is to minimize the prediction error for
the next word of the target sequence. For example,
when translating "Soy un estudiante" to "l am a
student”, the training of transformer (6) is to minimize
the KL divergence of the target sequence prediction
(y) and the ground truth (x) across the dataset (D).

L=— z log P(y|x;0)
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Attention Visualization: Long distance dependency

* Earlier we saw the sentence: “The animal didn't cross the !
street because it was too tired.” n
° What doeS ||it|| in th|S Sentence Layer:| 5 4| Attention:| Input - Input 4 551':; Z:;'
refer to? The visualization of i - raory
self-attention shows the - oo govemment arments
association of "it" with iy e
beginning parts like P et o
”The animal". becaus?i_ it:ecause_ m:figz rznt::’k?ng
v:z‘z: :ﬂ:}zs_— registratic;r: ;ergistration
tire tire voting voting
d_ d_ process process
B |ifiicult difficult
* On the right we see another visualization showing how e o
different words in a longer sentence relate to each other. <o e

<pad> <pad>

* Check out this interactive visualization.



https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Attention: Attention from Different Heads

e Attention heads can specialize The The ; 5
Law ::w/-ll_-:w

will will 4O will

Law

to capture various dependencies, such il

. H . . never never never e never
as syntactic and semantic relationships. be/be e =
. perfect/ perfect perfect N » perfect
* This allows the model to attend to -
. . . but = —= but but but
different types of causalities between st s s
. application application  application application
words in a sentence. shouid should should chould
be be
just/just just jUSt
this this this /thIS
Layer:| 5 3| Attention:  Input - Input % B e is%is is
n L
The_ The_ The_ The_ what what what what
an(ijrindsﬂf Zl;zr:aL ﬂn;rif;ﬁ:: Z?;:n_al_ we we /
‘ ) - ‘ missing missing missing missing
Cross_
th th the th , ,
street street street street in% in in
because _ because_ because _ because
it_ it it_ S my my my e my
was_ was_ was_ was_ opinion ~ opinion opinion opinion
too_ too_ too_ too_
tire t tire t . et i .
d d d_ d_ <EOS>-_h___h-_"“‘-—-<EOS> <E0S>/ <EOS>

<pad> <pad> <pad> <pad>



RNNs vs. Transformers

Recurrent Neural Network Transformers
* Handle Sequential Data * Handle Sequential Data
* Learn Sequential Dependencies * Learn Sequential Dependencies
* Each time step depends on the * Use self-attention to capture global
previous one context
; Pe s
IjAj = A A — A A
b & &b

6




RNNs vs. Transformers

Recurrent Neural Network Transformers

* (-) Learning long-range dependences is ° (+) Attention mechanism better
challenging due to recurrent structure captures long-range dependences

e Can be aided by specialized architectures * Able to handle both global context and
like LSTM and GRU local context
 Suffer from training issues such as * No vanishing gradient issues

vanishing gradient

* (-) Hard to scale up because each time < (+) Processes tokens in parallel, makes

step depends on the previous one it efficient for training on GPUs
* (+) Usually smaller number of e (-) Usually large number of parameters,
parameters, does not require lots of requires lots of data to train

data to train



Iterations of Transformers

Natural Language Processing

* BERT (Bidirectional Encoder Representations from Transformers)
* GPT (Generative Pre-trained Transformer)

 RoBERTa (Robustly Optimized Bert Pre-training)

e T5 (Text-to-Text Transfer Transformer)

Vision
* Vision Transformer
e Swin Transformer, Pyramid Vision Transformer
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