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Deep Generative Models:
Transformers



Taxonomy of Generative Models

What we’ve learned:
• PPCA
• VAE

What we’ve learned:
• Markov Models, HMMs, LDSs, 

RNNs

What we study now:
Transformers



• Many kinds of models
• Markov Chains

• Hidden Markov Models

• Markov Random Fields

• Linear Dynamical Systems

• Recurrent Neural Networks

• Transformers

• Last lecture
• Model: Introduced the vanilla RNN architecture

• Inference: Unfolding

• Training: Backpropagation Through Time

• Variants of RNNs: LSTMs, GRUs

• Seq2Seq: Machine Translation, Image Captioning

• Attention Mechanism: Soft and Hard Attention

Autoregressive Models



• Hard to capture long-term dependencies
• Require modification to architectures

• Hard to train due to vanishing and exploding Gradients

• Hard to process in parallel due to sequential nature

• Transformers: A non-recurrent solution that solely relies on “attention”: 
• No reliance on recurrence: 

• Transformers capture dependencies across all input tokens (words) simultaneously, 
processing the entire sequence at once. 

• This allows for parallel computation, unlike RNNs that rely on sequential processing.

• Captures global dependencies: 
• The attention mechanism enables modeling of long-range dependencies without the 

vanishing gradient problem. 

Last Lecture: Why RNNs fall short?





Recall the Translate and Align Model in RNNs
• Decoder: context vector 𝑐𝑡 is computed as a weighted sum 

of the hidden states 𝑧𝑗:

• Here:
• 𝑎 is called the Alignment model

• Computes how well the inputs around position 𝑗 and the output at 
position 𝑡 match

• Typically chosen to be a feedforward neural network

• 𝛾𝑡𝑗  is the probability that the target word 𝑦𝑡 is aligned to, or 
translated from, a source word 𝑥𝑗.

• 𝑐𝑡 is the expectation of the hidden state w.r.t. the distribution 𝛾𝑡𝑗 .
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• Let’s keep what is good from Align & Translate: 
• Use encoder to learn latent representation of source 

sentence

• Use decoder to learn latent representation of target 
sentence

• Align the latent representations of the source/target 
sentences and form global contexts 

• Use decoder to map contexts to target sentences

• Let’s recap our setting: Machine Translation
• We are given a sentence, a sequence of tokens 

(words) as input, represented by  𝑥 = 𝑥1, … , 𝑥𝑇 . 
We want to build an architecture that takes a 
sentence as input and produces a translated target 
sentence 𝑦 = 𝑦1, … , 𝑦𝑇  as output.

From RNNs to Transformers

𝑥1, 𝑥2, … , 𝑥𝑇

ENCODER

DECODER

𝑦0, 𝑦1, … , 𝑦𝑇−1

Input

Output 𝑦1, 𝑦2, … , 𝑦𝑇

𝑐1, 𝑐2, … , 𝑐𝑇Contexts



• Let’s keep what is good from Align & Translate: 
• Use encoder to learn latent representation of source 

sentence

• Use decoder to learn latent representation of target 
sentence

• Align the latent representations of the source/target 
sentences and form global contexts 

• Use decoder to map contexts to target sentences

• Let’s recap our setting: Machine Translation
• We are given a sentence, a sequence of tokens 

(words) as input, represented by  𝑥 = 𝑥1, … , 𝑥𝑇 . 
We want to build an architecture that takes a 
sentence as input and produces a translated target 
sentence 𝑦 = 𝑦1, … , 𝑦𝑇  as output.

Transformer

𝑥1, 𝑥2, … , 𝑥𝑇

ENCODER

DECODER

𝑦1, 𝑦2, … , 𝑦𝑇

𝑦0, 𝑦1, … , 𝑦𝑇−1



• First, just like any RNN language tasks, we 
convert our one-hot vector into embeddings 
through a word embedding

• Given a sentence, a sequence of one-hot 
vectors, ෤𝑥 = ෤𝑥1, … , ෤𝑥𝑇 , ෤𝑥𝑡 ∈ 0, 1 𝑁

• We obtain the embedding for each word by
𝑥𝑡 = 𝐸 ෤𝑥𝑡

• Again 𝐸 ∈ ℝ𝑑 ×𝑁 is the embedding matrix, and 
can be pre-trained or learned end-to-end

• In the context of transformers, 𝑥𝑡 is also known 
as a token.

Word to Word Embedding



• In RNNs, the recurrence plays a role in telling us 
the order of the words in a sentence. But now, we 
won’t have that, since we lose the recurrence

• Simple example: 
• {I, do, not, like, apples, and, you, like, oranges} and 

{you, like, apples, and, I, do, not, like, oranges} 

• Since they contain the same words, they are actually 
the same set! 

• Need method to encode position of an entity that
• Outputs a unique encoding for each position

• Distance between any two positions should be 
consistent across sentences with different lengths

• Generalize to longer sentences without any efforts

• Its values should be bounded

What about the order?



• Positional encoding describes 
the location or position of an 
entity in a sequence 

• Each position is assigned a 
unique representation

• Why not just use the index? 
• For long sequences, the indices can grow large in magnitude. 

• If you normalize the index value to lie between 0 and 1, it can create problems for variable 
length sequences as they would be normalized differently

Positional Encoding: Why vectors instead of indexes?



• Suppose you want to represent a number in binary
• The lowest bit alternates with every number

• The second-lowest bit alternates every two numbers, 
and and and higher bits continue this pattern.

• But using binary values would be a waste of space

• Instead, we can use their continuous counterparts: 
sinusoidal functions.

• By decreasing their frequencies, we replicate the 
behavior of binary bits:

• Higher frequencies alternate more rapidly, similar to the 
lower bits in binary (e.g., red bits).

• Lower frequencies alternate more slowly, similar to the 
higher bits in binary (e.g., orange bits).

Positional Encoding: Intuition



• To convey the ordering information , we use Positional Embeddings 𝑃 ∈ ℝ𝑑×𝑇

• In “Attention is All you Need”, authors suggested

• Let 𝑥 = 𝑥1, … , 𝑥𝑇 ∈ ℝ𝑑×𝑇be the (row) matrix of tokens concatenated together

• Positional Embedding gets added to the input directly to the set of tokens:
𝑥(0) = 𝑥 + 𝑃 ∈ ℝ𝑑×𝑇

• We use superscript (0) to denote the input, zero-th layer

Positional Encoding

𝑃𝑘,𝑖 = sin(
𝑘

10000
2𝑖
𝑑

) if 𝑖 is even

𝑃𝑘,𝑖 = cos(
𝑘

10000
2𝑖
𝑑

) if 𝑖 is odd



• Just like in the Attend & Align model, we have an 
encoder that turns input embeddings into hidden 
embeddings

• The main components of an Encoder Block is
• Multi-Head Attention

• LayerNorms

• Feedforward Neural Networks

• Skip Connections

• Let’s break down the Multi-Head Attention!

Encoder Block



• Focuses on important parts of the input by weighing 
the relevance of each token to the others. 

• What does “it” in the sentence “The animal didn't cross 
the street because it was too tired.” refer to? 

• Is it referring to the street or to the animal? 

• Self-attention allows each token to attend to every 
other token in the sequence, helping the model 
capture context and relationships between words.

• When processing "it", the model uses attention to 
understand that "it" refers to "animal.”

• In RNNs, a hidden state carries context from 
previous tokens, but attention mechanisms allow 
direct access to all tokens, without relying on a 
sequential flow.

Self-Attention



• Given the input embeddings 𝑥 = [𝑥1, … , 𝑥𝑇], we generate three matrices: 
• Query matrix 𝑄                           • Key matrix 𝐾                   • Value matrix 𝑉

• Input embeddings are transformed into these matrices by multiplying the 
embeddings by three weight matrices 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉  that we learn during the 
training process. 

• Analogy for Query, Key, and Value: Library System
• Imagine you’re looking for information on a topic (query)

• Each book has a summary (key) to help you identify if it 
contains relevant information.

• Once you find a match, you access the book to get the 
detailed information (value) you need.

• In Attention, we do a "soft match" across multiple 
books, combining relevant information from each book
in proportion to how relevant it is (e.g., book 1 is most 
relevant, then book 2, etc).

Self-Attention



Query (𝐐)

Key (𝐊𝟏)

Key (𝐊𝟐)

Key (𝐊𝟑)

𝜶𝟏

𝜶𝟐

𝜶𝟑

How similar is 
the query to 

the keys?

Value (𝐕𝟏)

Value (𝐕𝟐)

Value (𝐕𝟑)

a "soft match" across multiple articles, 
combining relevant information in 

proportion to how relevant it is 

Analogy for Query, Key, and Value



• Calculate the attention score by taking the dot product of 𝑄 and 𝐾𝑇. 

• Divide the scores by 𝑑𝑘, where 𝑑𝑘 is the dimension of the hidden embedding, 
to ensure the variance of the dot product does not grow with 𝑑𝑘, leading to 
unstable attention mechanism.

• Apply the softmax function to the scaled scores, turning them into probabilities. 

• Multiply softmax scores by 𝑉 to obtain the final attention output. 

• The self-attention, thus, is defined as: 

• The term “self” comes from the fact that 𝑄, 𝐾, 𝑉 are all derived
from the same input sequence 𝑥 = [𝑥1, … , 𝑥𝑇]

Self-Attention

SA 𝑄, 𝐾, 𝑉  =  



• Multi-head Self Attention (MSA) extends Self-Attention by introducing multiple 
independent attention heads, each focusing on different types of relationships. 

• Each head is considered as one copy of a single Self Attention, with additional weight 
matrices 𝑊𝑖

𝑄, 𝑊𝑖
𝐾, 𝑊𝑖

𝑉 for each head, indexed by 𝑖:

• Where 𝑊𝑂 ∈ ℝ ℎ⋅𝑑𝑣 ×𝑑 is the weighting matrix between all 
attention heads, and 𝑊𝑖

𝑄, 𝑊𝑖
𝐾, 𝑊𝑖

𝑉 are weight matrices of 
query, key value for each head 𝑖 = 1, … , ℎ

• Multi-Head Cross Attention (MCA) applies the same mechanism in 
the context where the queries, keys, and values might come from different sources.  

Multi-Head Self-Attention (MSA)

MSA(𝑄, 𝐾, 𝑉) = SA 𝑄1, 𝐾1, 𝑉1 , … , SA 𝑄ℎ , 𝐾ℎ , 𝑉ℎ 𝑊𝑂

𝑄𝑖 = 𝑊𝑖
𝑄

𝑄 𝐾𝑖 = 𝑊𝑖
𝐾𝐾 𝑉𝑖 = 𝑊𝑖

𝑉𝑉

“The animal didn't cross the street because it was too tired.”

action of 

target

cause

inverts



• Residual Connection: combines the input with 
the output of a sub-layer (either self-attention 
or feed forward). 

• It allows the gradients to flow through the network 
directly, bypassing non-linear transformations. 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑁 𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝑥

• LayerNorm normalizes the inputs across the 
features instead of the batch dimension.

• This ensures consistent scaling across layers, leading 
to more stable training.

𝐿𝑁 𝑥 = 𝛾 ∙
𝑥 − 𝜇

𝜎
+ 𝛽

Residual Connection & Layer Normalization



• Putting everything together mathematically, the 
encoder block can be described by 

where FFN is a feed forward neural network and 
LN denotes Layer Norm

• Note that the input and output dimension of 
the encoder block is the same - ℝ𝑇×𝑑

• We can stack encoder blocks together to make 
it deeper

• The output is like the input a collection of 
tokens, but in context with other tokens

Encoder Block Summarized

ො𝑥 𝑙 = LN MSA 𝑥 𝑙−1 , 𝑥 𝑙−1 , 𝑥 𝑙−1 + 𝑥 𝑙−1

𝑥 𝑙 = LN(FFN ො𝑥 𝑙 + ො𝑥 𝑙 )



• Now, we are going to switch gears into the decoder blocks

• At a high level,
• During inference, the decoder will take in a <BOS> (beginning of sentence) token as input, 

and recursively predict the next word until the <EOS> (end of sentence) token is predicted

• Just like our previous methods for machine translation, the decoder should take in context 
from the encoder to predict what the next token should be

Decoder Block



• In the Encoder, each block consists of only one 
Multi-Head Self-Attention layer. 

• In the Decoder, each block consists two layers:
• The first one is a Masked Multi-Head Self-Attention with 

tokens from input (ignore ”masked” part for now)
• Allows each token to attend to previous ones in the sequence.  

• The Second one is a Multi-Head Cross Attention with 
key and values matrices from the output of the encoder, 
and query matrix from the previous Multi-Head Self-
Attention

• Allows the decoder to focus on relevant part of encoded input

• 𝑥(𝑁) is the output of the encoder (composed of 𝑁 
encoder layers)

Decoder Block: Attention Layers

ො𝑦 𝑙 = LN MaskedMSA 𝑦 𝑙−1 , 𝑦 𝑙−1 , 𝑦 𝑙−1 + 𝑦 𝑙−1

෤𝑦 𝑙 = LN MCA ො𝑦 𝑙−1 , 𝑥 𝑁 , 𝑥 𝑁 + ො𝑦 𝑙−1



• Summarizing a forward pass of the Decoder Block, 
along with Layer Norms and Feedforward 
Networks like the Encoder:

Decoder Block: Summarized

ො𝑦 𝑙 = LN MaskedMSA 𝑦 𝑙−1 , 𝑦 𝑙−1 , 𝑦 𝑙−1 + 𝑦 𝑙−1

෤𝑦 𝑙 = LN MCA ො𝑦 𝑙−1 , 𝑥 𝑁 , 𝑥 𝑁 + ො𝑦 𝑙−1

𝑦 𝑙 = LN(FFN ෤𝑦 𝑙 + ෤𝑦 𝑙 )



• Summarizing a forward pass of the Decoder Block, 
along with Layer Norms and Feedforward 
Networks like the Encoder:

• But, what does the “Masked” in Masked Multi-
Head Attention mean? 

Decoder Block: Masked?

ො𝑦 𝑙 = LN MaskedMSA 𝑦 𝑙−1 , 𝑦 𝑙−1 , 𝑦 𝑙−1 + 𝑦 𝑙−1

෤𝑦 𝑙 = LN MCA ො𝑦 𝑙−1 , 𝑥 𝑁 , 𝑥 𝑁 + ො𝑦 𝑙−1

𝑦 𝑙 = LN(FFN ෤𝑦 𝑙 + ෤𝑦 𝑙 )



• Just liked Multi-Head Attention, MaskedMHA 
calculates attention scores using a scaled dot-
product of Query and Key vectors, and normalizes 
these scores with a softmax function to obtain 
attention weights.

• During training, MMHA applies masks on the 
attention matrices. This is important to preserve 
the autoregressive property, where each
token is predicted based on the preceding tokens 
only.

Decoder Block: Masked MHA

M is a mask that applies −∞ to all 

future positions so they don’t 

contribute to the softmax output.

M

+MaskedSA =  



• Training the Transformer shares similar intuition with 
other Seq2Seq models. The transformer uses masked 
self-attention in the decoder, which doesn’t depend on 
future words in the sequence.

• The objective is to minimize the prediction error for 
the next word of the target sequence. For example, 
when translating "Soy un estudiante" to "I am a 
student", the training of transformer (𝜃) is to minimize 
the KL divergence of the target sequence prediction 
(y) and the ground truth (x) across the dataset (D).

ℒ = − ෍

𝑥,𝑦 ∈𝒟

log 𝑃 𝑦 𝑥; 𝜃

Training



• Earlier we saw the sentence: “The animal didn't cross the 
street because it was too tired.”

• What does "it" in this sentence
refer to? The visualization of
self-attention shows the 
association of "it" with 
beginning parts like 
"The animal".

• On the right we see another visualization showing how 
different words in a longer sentence relate to each other.

• Check out this interactive visualization.  

Attention Visualization: Long distance dependency

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb


Attention: Attention from Different Heads
• Attention heads can specialize 

to capture various dependencies, such 
as syntactic and semantic relationships.

• This allows the model to attend to 
different types of causalities between 
words in a sentence.



Recurrent  Neural Network

• Handle Sequential Data

• Learn Sequential Dependencies

• Each time step depends on the 
previous one

RNNs vs. Transformers
Transformers

• Handle Sequential Data

• Learn Sequential Dependencies

• Use self-attention to capture global 
context



RNNs vs. Transformers
Transformers

• (+) Attention mechanism better 
captures long-range dependences

• Able to handle both global context and 
local context

• No vanishing gradient issues

• (+) Processes tokens in parallel, makes 
it efficient for training on GPUs

• (-) Usually large number of parameters, 
requires lots of data to train

Recurrent  Neural Network

• (-) Learning long-range dependences is 
challenging due to recurrent structure

• Can be aided by specialized architectures 
like LSTM and GRU

• Suffer from training issues such as 
vanishing gradient

• (-) Hard to scale up because each time 
step depends on the previous one

• (+) Usually smaller number of 
parameters, does not require lots of 
data to train



Natural Language Processing

• BERT (Bidirectional Encoder Representations from Transformers)

• GPT (Generative Pre-trained Transformer)

• RoBERTa (Robustly Optimized Bert Pre-training)

• T5 (Text-to-Text Transfer Transformer)

Vision

• Vision Transformer

• Swin Transformer, Pyramid Vision Transformer

Iterations of Transformers
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